Transcript profiling for Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression

Jin-Wen Zhu · You-Ping Xu · Zhi-Xin Zhang · Wen-Yuan Cao · Xin-Zhong Cai

Received: 30 November 2007 / Accepted: 18 February 2008 / Published online: 8 March 2008 © KNPV 2008

Abstract Tomato Cf genes confer resistance to the leaf mold pathogen Cladosporium fulvum. The Avr4/ Cf-4- and Avr9/Cf-9-dependent hypersensitive responses (HRs) are distinct in cell death pattern, intensity, and sensitivity to environmental conditions. To understand the mechanism resulting in these differences, comparative transcript profiling for Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression by cDNA-AFLP was performed previously. 367 ACE (Avr/Cf-elicited) transcript-derived fragments (TDFs) were identified, among which 189 were cloned and sequenced. In this study, we report another 89 ACE fragments. These ACE genes were associated with: defence, signal transduction, HR and cell death, transcriptional regulation, metabolism, protein synthesis, photosynthesis, membrane fusion, secretion and

article (doi:10.1007/s10658-008-9294-1) contains supplementary material, which is available to authorized users.

J.-W. Zhu · Z.-X. Zhang · W.-Y. Cao · X.-Z. Cai (🖂) College of Agriculture and Biotechnology, Zhejiang University, 268 Kai Xuan Road, Hangzhou 310029, People's Republic of China e-mail: xzhcai@zju.edu.cn

Y.-P. Xu Centre of Analysis and Measurement, Zhejiang University, 268 Kai Xuan Road, Hangzhou 310029, People's Republic of China

Electronic supplementary material The online version of this

trafficking, miscellaneous biological processes, and genes with unknown function or with no significant similarity to known sequences. Among these sequences 43 (potentially encoding 36 types of proteins) were identified for the first time as genes differentially expressed during the development of Avr/Cf-dependent HR. Sequence and expression data from this study further support that transcription is reprogrammed to promote defence response and HR and repress photosynthesis in the *Avr/Cf* HR⁺ seedlings.

Keywords *ACE* · *Cladosporium fulvum* · Defence · Signal transduction · Tomato · Transcriptome

Cladosporium fulvum is the fungal pathogen of tomato leaf mould disease. The tomato and C. fulvum pathosystem is a model system for the study of genefor-gene resistance (Joosten and De Wit 1999; Wang et al. 2006). From this pathosystem, several Avr genes and the cognate Cf genes, including Avr9/Cf-9 (Van den Ackerveken et al. 1992; Jones et al. 1994), and Avr4/Cf-4 (Joosten et al. 1994; Thomas et al. 1997), have been cloned. Both the Cf-4 and Cf-9 genes encode extracellular, membrane-anchored, glycoproteins that consist mainly of LRR domains (Jones et al. 1994; Thomas et al. 1997). Furthermore, over 91% of the amino acids of the Cf-4 and Cf-9 proteins are identical (Jones et al. 1994; Thomas et al. 1997). However, the hypersensitive response (HR) resulting from recognition of Avr9 and Avr4 by Cf-9 and Cf-4, respectively, is distinct in cell death pattern and

intensity (Cai et al. 2001). Thus, compared to the *Avr9/Cf-9*-dependent HR, *Avr4/Cf-4*-dependent HR is more rapid (Thomas et al. 2000; Van der Hoorn et al. 2000; Cai et al. 2001), with necrosis appearing primarily in the veins of the *Avr/Cf*-carrying F₁ seedlings resulting from crosses between Cf plants and Cf0 plants expressing a complementary *Avr* gene (Cai et al. 2001). In addition, the two *Avr/Cf*-dependent HRs are different in their sensitivity to environmental conditions. *Avr9/Cf-9*-dependent HR is more sensitive to high temperature and high relative humidity than *Avr4/Cf-4*-dependent HR (De Jong et al. 2002; Wang et al. 2005).

To elucidate the mechanism leading to the distinct nature of the Avr4/Cf-4- and Avr9/Cf-9-dependent HRs, we have previously compared the defence signal transduction pathways and the resulting defence response downstream of Cf-4 and Cf-9 by comparative transcript profiling of Avr4/Cf-4- and Avr9/Cf-9dependent defence gene expression employing cDNA-AFLP analysis of F₁ hybrid tomato lines expressing the gene pair Avr4/Cf-4 or Avr9/Cf-9 (Hong et al. 2007). 367 ACE (Avr/Cf-elicited) transcriptderived fragments (TDFs), which showed significant differential expression between HR⁺ and HR⁻ seedlings (either Avr4/Cf-4- or Avr9/Cf-9-dependent), were identified. The expression data reveal that the spectrum of the genes differentially expressed during HR development is most likely to be identical for both Avr4/Cf-4- and Avr9/Cf-9-dependent HRs. However, a significant number (42.8%) of the ACE TDFs showed quantitatively different expression in the two types of HR⁺ seedlings. The majority of these (86.0%) displayed significantly greater differential expression (either induced or repressed) in Avr4/Cf-4 HR⁺ seedlings than in Avr9/Cf-9 HR⁺ seedlings (Hong et al. 2007). These results are consistent with the earlier observation that Avr4/Cf-4-dependent HR is more severe than Avr9/Cf-9-dependent HR (Cai et al. 2001).

Among the 367 ACE TDFs, 189 fragments, which displayed the most significant differences in the expression level between the HR⁺ and HR⁻ samples have been cloned and sequenced in our previous study (Hong et al. 2007). In the present study, more insights into the mechanism of the Avr4/Cf-4- and Avr9/Cf-9-dependent HRs were provided, and another 89 ACE TDFs, which showed differential expression between the HR⁺ and HR⁻ samples, were cloned and sequenced.

The dried polyacrylamide gels with separated cDNA-AFLP selective PCR products, conducted previously (Hong et al. 2007), were used to obtain new ACE sequences. The fragments corresponding to genes differentially expressed in the HR⁺ Avr/Cf seedlings (8 h after temperature shift from 33°C to 20°C when clear hypersensitive necrosis is visible by the naked eyes) in comparison with the HR Avr/Cf seedlings (grown constantly at 33°C) and the Cf and Avr parent seedlings (either grown constantly at 33°C or after a temperature shift) were subjected to cloning. The bands containing differentially expressed fragments, amplified from the Avr4/Cf-4 seedlings (or from the Avr9/Cf-9 seedlings, in cases where they were more strongly expressed in this type of seedlings), were excised from the dried gels and eluted in 100 µl of 2 mm Tris-HCl (pH 8.0) overnight at room temperature, kept in a water bath at 55°C for 10 min, after which 5 µl was re-amplified using the same primer set as for the initial selective PCR amplification. The fragments were cloned into pGEM-T easy vector (Promega, USA) and sequenced. In this way, a total of 89 sequences was obtained. Among them, 56 were unique, while the other 33 corresponded to 11 TC or SGN-U sequences. Therefore, the maximum number of newly-cloned ACE genes corresponding to the 89 fragments was 67.

The sequences were analysed for homology by searching in GenBank, DFCI (Dana Farber Cancer Institute, http://compbio.dfci.harvard.edu/tgi) and SGN (the sol genomics network, http://www.sgn. cornell.edu/) databases using the BLAST sequence alignment programmes (Altschul et al. 1997; Gish 1996-2006, http://blast.wustl.edu). Considering a great number of tomato EST and TC sequences ('Tentative Consensus' sequences, which are assemblies of non-human ESTs) are available in the DFCI and SGN databases, we first used the obtained 89 ACE sequences to search for homologues deposited in these databases by BLASTN analyses, which were then used to search for homologues deposited in the GenBank database by BLASTX analyses. In cases where no homologues were retrieved in the DFCI and SGN databases, direct BLAST searches were performed in the GenBank database for the ACE sequences.

Results of homology searches revealed that out of the 89 newly-cloned *ACE* fragments, 1 (1.1%) had no significant similarity to known sequences (*E*-value

Table 1 Functional classification of the 89 ACE TDFs cloned in this study

Functional classes	ACE fragments	Percentage (%) of the 89 fragments	
HR/cell death-associated	1	1.1	
Signalling-related	9	10.1	
Defence-related	9	10.1	
Transcriptional regulation	9	10.1	
Metabolism	13	14.7	
Protein synthesis	8	9.0	
Photosynthesis	18	20.3	
Miscellaneous	9	10.1	
Membrane fusion and secretion	1	1.1	
Membrane trafficking	1	1.1	
Stress-responsive	1	1.1	
Unknown function	9	10.1	
No similarity to known sequences	1	1.1	
Total	89	100	

>0.05); 9 (10.1%) were homologous to sequences with an unknown function, while the remainder (79, 88.8%) had homology to sequences with known functions such as defence and resistance, signal transduction, HR and cell death, transcriptional regulation, metabolism, protein synthesis, membrane fusion, secretion and trafficking, photosynthesis and miscellaneous biological processes (Supplementary Table 1; Table 1).

The largest class of the 89 ACE fragments was related to sequences involved in photosynthesis. This class contained 18 fragments, corresponding to 20.2% of the total 89 sequences. The encoding products of this class of ACE genes comprised 10 distinct types of proteins, including chlorophyll biosynthetic enzymes magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase and Mg-protoporphyrin IX chelatase, light harvesting chlorophyll a/b-binding proteins, a set of photosystem I and II reaction centre subunits and assembly proteins, electron transporter ferredoxins, and CO₂ assimilation regulator ribulose bisphosphate carboxylase subunits. All these ACE genes were down-regulated in HR⁺ seedlings when compared with HR seedlings, demonstrating that photosynthesis is repressed in the HR⁺ seedlings. This observation is consistent with our earlier result (Hong et al. 2007).

The metabolism-related class of *ACE* fragments is the second largest, containing 13 fragments (14.6%), most of which were associated with synthesis,

modification and transportation of nutrients and secondary metabolites, among which many were involved in plant defence responses.

There were nine defence-related ACE fragments, which corresponded to genes encoding a carbonic anhydrases, a xyloglucan-specific fungal endoglucanase inhibitor protein, a polyphenol oxidase, a methionine-rich arabinogalactan protein, and the well-known defence-related proteins such as β -1, 3-glucanase, endochitinase and tomato pathogenesis-related protein P2. Additionally, one ACE fragment corresponded to the gene encoding a Hin1-like protein, which is a well-known HR marker.

Nine signalling-related *ACE* fragments were identified. Seven corresponded to the same gene encoding a GTP-binding protein, while the other two corresponded to genes encoding a nodulin-like protein and a calcium-binding EF hand family protein, respectively.

Nine ACE fragments corresponded to genes encoding for at least four types of transcriptional regulators: ethylene-responsive ER33 protein/BHLH transcription factor, C2H2-type zinc finger family transcriptional factor, DEAD-box RNA helicase-like protein, and RNA polymerase subunits. The class of protein synthesis-related ACE fragments, totally eight, corresponded to genes encoding a set of ribosomal proteins.

An ACE fragment matched the gene encoding a syntaxin-like protein, which is involved in membrane fusion and secretion, while another corresponded to the gene encoding beta prime of a coatomer protein complex (COP), which plays a role in membrane trafficking.

Additionally, one group of the *ACE* fragments corresponded to genes associated with multiple biological processes, including tubby-like F-box protein, proton-dependent peptide transport family protein, C2 domain-containing protein, trigger factor-type chaperone family protein, ABC transporter ATPase, and a set of proteins involved in protein degradation, activation and modification, such as ATP-dependent Clp protease and DnaJ protein.

Transcript profiling of *Avr/Cf*-dependent HR has been conducted previously using cDNA-AFLP analysis. TDFs of *ACRE* (for *Avr9/Cf-9* rapidly elicited) genes and *ART* (for Avr4-responsive tomato) genes have been cloned (Durrant et al. 2000; Gabriëls et al. 2006). Therefore, analysis of sequence overlap for *ACRE*, *ART* and our previously cloned *ACE* fragments

(Hong et al. 2007) was performed using DNAstar SeqMan II software. The *ACE*-matching TC and SGN sequences were also included together with *ACRE*, *ART* and our previously cloned *ACE* fragments for assembly analysis. We found that of the 89 *ACE* fragments cloned in this study, 43 fragments (potentially encoding 36 types of proteins) were distinct from the reported Avr/Cf elicited sequences (Table 2). They are involved in a wide range of functions (Table 2) and provide new information potentially useful in elucidating the mechanism of the *Cf/Avr*-dependent HR and resistance.

Arabinogalactan proteins (AGPs) are a family of highly glycosylated, hydroxyproline-rich glycoproteins implicated in plant growth and development, hormone signalling and programmed cell death (Chaves et al. 2002). Accumulation of an AGP protein, attAGP, in host plant tomato at the sites of attack by parasitic plant dodder promotes the parasite's adherence, and thus is beneficial for its infection (Albert et al. 2006). In this study we found that a tomato *AGP* gene (*ACE344*) is down-regulated during the development of *Cf/Avr*-dependent HR.

Among the three unique transcription-related ACE proteins is a DEAD-box RNA helicase-like protein. The DEAD-box RNA helicases comprise the largest subfamily of RNA helicases. They play regulatory roles in transcription, translation, RNA processing and ribosome assembly (Lorsch, 2002). Some specific functions of these proteins in plants, such as the biogenesis of microRNAs and plant development (Jacobsen et al. 1999; Park et al. 2002) and cold

Table 2 Newly cloned ACE TDFs distinct from ART, ACRE and ACE TDFs cloned before

Functional class	Product	ACE fragment	
Defence-related	Methionine-rich arabinogalactan protein	344	
Signalling-related	Nodulin-like protein	321a	
Transcriptional regulator	BHLH transcription factor/Ethylene-responsive ER33 protein	171,172	
	RNA polymerase subunit	305,311	
	DEAD-box RNA helicase-like protein	331	
Metabolism	Acetyl-CoA synthetase	272	
	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase	277	
	Glyceraldehyde-3-phosphate dehydrogenase B subunit	290	
	Nicotianamine synthase	292	
	Flavonol synthase-like protein	309	
	Reticuline oxidase precursor/Nectarin 5-like protein	333	
	Chloroplast inorganic pyrophosphatase	358b	
Photosynthesis	Photosystem I assembly protein	322a,322c	
·	Membrane-associated 30 kDa protein chloroplast precursor	334	
	Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase chloroplast precursor	251	
	Mg-protoporphyrin IX chelatase	345	
	Tetratricopeptide repeat (TPR) domain containing ferredoxin-like protein	348	
	Ferredoxin-1 chloroplast precursor	351	
Miscellaneous	Proton-dependent peptide transport family protein	281	
	C2 domain-containing protein	285b	
Stress-responsive	Stress enhanced protein 2	289	
Membrane fusion and secretion	Syntaxin 132-like	267	
Membrane trafficking	Coatomer protein complex beta prime	273	
Protein synthesis	Chloroplast 30S ribosomal protein	258a,347,358a	
-	40S ribosomal protein S8	276	
	Plastid ribosomal protein S10 precursor	346,361a	
Unknown	Expressed unknown protein	263a,274,284,288,295,314,337,352,252a	
	No similarity to known sequences	161	

response (Gong et al. 2005) have been reported. Mutations of the allelic DEAD-box RNA helicase genes *cryophyte/los4-2* and *los4-1* both affect cold responses but in opposite ways (Gong et al. 2005). It is still unknown whether the DEAD-box RNA helicase is involved in plant defence. In present study we found that a tomato DEAD-box RNA helicase-like protein gene (*ACE331*) is strongly down-regulated during the development of *Cf/Avr*-dependent HR. It will be interesting to further investigate its possible role in this process.

Up-regulation of a gene encoding a syntaxin 132like protein (ACE267), in Avr/Cf HR⁺ seedlings was observed in this study. Syntaxins are essential components of the SNARE (soluble N-ethylmaleimidesensitive factor attachment protein receptor) machinery, controlling vesicle trafficking in cells (Sanderfoot et al. 2001). In plants, some plasma membrane syntaxins such as SYP121 and SYP132 have been found to be essential for defence and disease resistance (Collins et al. 2003; Kalde et al. 2007; Zhang et al. 2007). A syntaxin identified from Nicotiana benthamiana, NbSYP132, is a key component contributing to AvrPto/Pto-mediated gene-for-gene resistance, and basal and salicylate-associated defense to bacterial pathogens, possibly via regulating exocytosis of vesicles containing antimicrobial PR proteins (Kalde et al. 2007). Furthermore, a tobacco syntaxin NtSyp121 is rapidly phosphorylated after Avr9 elicitation (Heese et al. 2005). These data indicate that syntaxin-mediated membrane trafficking may play an important role in Cf-dependent HR and resistance.

Two unique ACE fragments correspond to genes involved in miscellaneous biological processes. They encode a proton-dependent peptide transporter family protein (ACE281) and a C2 domain-containing protein (ACE285b). The peptide transporter family (PTR) proteins can transport peptides as well as many other molecules (Stacey et al. 2002). Recently, an Arabidopsis peptide transporter AtPTR3 was found to be required for defence against virulent pathogenic bacteria Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tomato (Karim et al. 2007). The C2 domain is a Ca2+-dependent membrane-targeting module found in many cellular proteins involved in a variety of biological processes such as signal transduction or membrane trafficking. The C2 domain-containing proteins BON1, BAP1 and BAP2 were reported to form into a complex to negatively regulate both basal and the *R* gene *SNC1*-mediated defence to bacterial and oomycete pathogens and act as inhibitors of programmed cell death (Yang et al. 2006, 2007). We observed that *ACE281* is up-regulated while *ACE285b* is down-regulated during the *Cf/Avr*-dependent HR. These expression patterns are positively correlated to HR and defence development, indicating their possible involvement in the process.

In addition to the 43-unique *ACE* fragments, the remaining 46 (encoding 26 types of proteins), involved in a variety of functions, are functionally overlapped by *ACRE*, *ART*, and/or our previously identified *ACE* genes (Supplementary Table 2). These include Zinc finger (C2H2 type) family DNA/RNA binding protein, carbonic anhydrase, GTP binding protein, calcium binding protein, Hin1-like protein, and a group of proteases (Supplementary Table 2).

Dissection of the functions of the *ACE* genes mentioned above, as well as those with unknown function or with no similarity to known sequences, will provide new information on the possible mechanism of the *Cf/Avr*-dependent HR and resistance.

One of the aims of our transcript profiling study is to examine whether the Avr4/Cf-4- and Avr9/Cf-9dependent signalling pathways and defence responses are different. Combining the sequence data of this study and the previous one, we found that the two Avr/Cf interactions elicit expression change of the same ACE genes (Hong et al. 2007; this study). However, among the total 278 cloned ACE fragments, 107 (38.5%) displayed different expression levels in the Avr9/Cf-9 HR⁺ and Avr4/Cf-4 HR⁺ seedlings. Of these, 91 (85.1%) had higher expression levels in the Avr4/Cf-4 HR⁺ seedlings. These 91 ACE fragments are involved in a variety of functions including defence, HR and cell death, signal transduction, and transcriptional regulation (Table 3). These data are consistent with our previous observations that the Avr4/Cf-4dependent HR in Avr/Cf tomato seedlings is more rapid and severe than the Avr9/Cf-9-dependent HR (Cai et al. 2001), and further indicate that the Avr4/Cf-4- and Avr9/Cf-9-dependent signalling pathways are similar, and thus the different cell death patterns of the Avr4/Cf-4- and Avr9/Cf-9-dependent HR probably result from events upstream of signal transduction and activation of defence responses, such as a different level and/or tissue specificity of Cf gene expression and/or a different Avr recognition mechanism by the two Cfs.

Table 3 Functional classification and expression of the total 278 ACE TDFs

Functional classes	ACE fragments		ACE fragments differentially expressed when elicited by Avr9/Cf-9 and Avr4/Cf-4 ^a	ACE fragments expressed more strongly when elicited by Avr9/Cf-9 ^b	ACE fragments expressed more strongly when elicited by Avr4/Cf-4 ^c
Resistance protein	1	0.4	1 (100%)	0	1 (100%)
HR/cell death- associated	11	4.0	7 (63.6%)	0	7 (100%)
Signalling- related	23	8.3	9 (39.1%)	3 (33.3%)	6 (66.7%)
Defence- related	71	25.5	21 (29.6%)	2 (9.5%)	19 (90.5%)
Transcriptional regulation	15	5.4	7 (46.7%)	1(14.3%)	6 (85.7%)
RNA splicing	2	0.7	0	0	0
Protein and water transport	4	1.4	2 (50%)	0	2 (100%)
Metabolism	53	19.1	21 (40.4%)	2 (9.5%)	19 (90.5%)
Protein synthesis	13	4.7	7 (53.8%)	1 (14.3%)	6 (85.7%)
Photosynthesis	29	10.4	6 (20%)	1 (16.7%)	5 (83.3%)
Miscellaneous	21	7.5	9 (42.8%)	2 (22.2%)	7 (77.8%)
Membrane fusion and secretion	1	0.4	1(100%)	0	1(100%)
Membrane trafficking	1	0.4	0	0	0
Stress- responsive	1	0.4	0	0	0
Unknown function	29	10.4	15 (51.7%)	4(26.7%)	11 (73.3%)
No similarity to known sequences	3	1.1	1 (100%)	0	1 (100%)
Total	278	100	107 (38.5%)	16 (14.9%)	91 (85.1%)

^a The percentage ACE fragments differentially expressed when elicited by the Avr9/Cf-9 and Avr4/Cf-4 in total ACE fragments of this class is given in parenthesis.

A variety of molecular and physiological processes are affected by transcriptional regulation in the *Avr/Cf* HR⁺ seedlings. The major physiological processes include defence response, metabolism, respiration and biological oxidation, and photosynthesis (Supplementary Table 1 of Hong et al. 2007; Supplementary Table 1 and Table 3 of this study). As expected, defence response appears to be a major focus of transcriptional regulation, with this class of *ACE*

fragments comprising 25.5% of the total cloned 278 sequences. Metabolism also dramatically changes in the *Avr/Cf* HR⁺ seedlings in comparison with the HR⁻ seedlings. This class of *ACE* fragments compose 19.1% of the 278 sequences. Many metabolism-related *ACE* genes encode enzymes and proteins that are essential for biosynthesis of defence- and HR-related molecules; and their expression patterns are beneficial for accumulation of defence- and HR-related compo-

^b The percentage ACE fragments expressed more strongly when elicited by the Avr9/Cf-9 in total ACE fragments differentially expressed when elicited by the Avr9/Cf-9 and Avr4/Cf-4 is given in parenthesis.

^c The percentage ACE fragments expressed more strongly when elicited by the Avr4/Cf-4 in total ACE fragments differentially expressed when elicited by the Avr9/Cf-9 and Avr4/Cf-4 is given in parenthesis.

nents, indicating that metabolism in the Avr/Cf HR⁺ seedlings is reprogrammed to promote defence response and HR. Some examples are ACEs 149, 199, 200, 268, 272, 277, which correspond to genes encoding a glycosyltransferase, an auxin and ethyleneresponsive GH3-like protein, and an acetyl-CoA synthetase, respectively, which have been reported to play a role in plant defence and resistance (Langlois-Meurinne et al. 2005; Nobuta et al. 2007; Tang et al. 2007). Additionally, over 10% of the 278 ACE fragments correspond to genes encoding numerous components of a complex involved in the whole process of photosynthesis (Supplementary Table 1 of Hong et al. 2007; Supplementary Table 1 and Table 3 of this study). These biological processes are affected differently in the Avr/Cf HR⁺ seedlings: defence response, respiration and biological oxidation are strongly induced while photosynthesis is tremendously repressed, as indicated by the change of expression of the related ACE genes (Supplementary Table 1 of Hong et al. 2007; Supplementary Table 1 of this study).

Acknowledgements We are grateful to Dr. Matthieu Joosten (Wageningen University, The Netherlands) for providing sequences of the *ART* fragments. This work was financially supported by the National Basic Research Programme of China (grant No. 2006CB101903), the Fok Ying Tong Education Foundation (grant No. 101032), and the National Natural Science Foundation of China (grant nos. 30070492, 30671352).

References

- Albert, M., Belastegui-Macadam, X., & Kaldenhoff, R. (2006). An attack of the plant parasite *Cuscuta reflexa* induces the expression of attAGP, an attachment protein of the host tomato. *Plant Journal*, 48, 548–556.
- Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Research*, 25, 3389–3402.
- Cai, X., Takken, F. L. W., Joosten, M. H. A. J., & De Wit, P. J. G. M. (2001). Specific recognition of AVR4 and AVR9 results in distinct patterns of hypersensitive cell death in tomato, but similar patterns of defence-related gene expression. *Molecular Plant Pathology*, 2, 77–86.
- Chaves, I., Regalado, A. P., Chen, M., Ricardo, C. P., & Showalter, A. M. (2002). Programmed cell death induced by (b-D-galactosyl)₃ Yariv reagent in *Nicotiana tabacum* BY-2 suspension-cultured cells. *Physiologia Plantarum*, 116, 548–553.
- Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qui, J. L., et al. (2003). SNARE-proteinmediated disease resistance at the plant cell wall. *Nature*, 425, 973–007.

- De Jong, C. F., Takken, F. L. W., Cai, X., De Wit, P. J. G. M., & Joosten, M. H. A. J. (2002). Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding sites. Molecular Plant-Microbe Interactions, 15, 1040–1049.
- Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E., & Jones, J. D. G. (2000). cDNA-AFLP reveals a striking overlap in race specific resistance and wound response gene expression profiles. *Plant Cell*, 12, 963– 977.
- Gabriëls, S. H. E. J., Takken, F. L. W., Vossen, J. H., de Jong, C. F., Liu, Q., Turk, S. C. H. J., et al. (2006). cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. *Molecular Plant-Microbe Interactions*, 19, 567–576.
- Gish, W. (1996-2006). http://blast.wustl.edu.
- Gong, Z., Dong, C.-H., Lee, H., Zhu, J., Xiong, L., Gong, D., et al. (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in *Arabidopsis*. *Plant Cell*, 17, 256–267.
- Heese, A., Ludwig, A. A., & Jones, J. D. G. (2005). Rapid phosphorylation of a syntaxin during the Avr9/Cf-9-racespecific signaling pathway. *Plant Physiology*, 138, 2406– 2416
- Hong, W., Xu, Y. P., Zheng, Z., Cao, J. S., & Cai, X. Z. (2007). Comparative transcript profiling by cDNA-AFLP reveals similar patterns of Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression. Molecular Plant Pathology, 8, 515–527.
- Jacobsen, S. E., Running, M. P., & Meyerowitz, E. M. (1999).
 Disruption of an RNA helicase/RNAse III gene in *Arabidopsis* causes unregulated cell division in floral meristems. *Development*, 126, 5231–5243.
- Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J., & Jones, J. D. G. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 266, 789–793.
- Joosten, M. H. A. J., Cozijnsen, T. J., & De Wit, P. J. G. M. (1994). Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. *Nature*, 367, 384–386.
- Joosten, M. H. A. J., & De Wit, P. J. G. M. (1999). The tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annual Review of Phytopathology, 37, 335–367.
- Kalde, M., Nuhse, T. S., Findlay, K., & Peck, S. C. (2007). The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proceedings of the National Academy of Science of the USA, 104, 11850–11855.
- Karim, S., Holmström, K.-O., Mandal, A., Dahl, P., Hohmann, S., Brader, G., et al. (2007). AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in *Arabidopsis. Planta*, 225, 1431–1445.
- Langlois-Meurinne, M., Gachon, C. M. M., & Saindrenan, P. (2005). Pathogen-responsive expression of glycosyltransferase genes *UGT73B3* and *UGT73B5* is necessary for resistance to *Pseudomonas syringae* pv. tomato in Arabidopsis. Plant Physiology, 139, 1890–1901.
- Lorsch, J. R. (2002). RNA chaperones exist and DEAD box proteins get a life. *Cell*, 109, 797–800.

- Nobuta, K., Okrent, R. A., Stoutemyer, M., Rodibaugh, N., Kempema, L., Wildermuth, M. C., et al. (2007). The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in *Arabidopsis*. *Plant Physiology*, 144, 1144–1156.
- Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in *Arabidopsis* thaliana. Current Biology, 12, 1484–1495.
- Sanderfoot, A. A., Pilgrim, M., Adam, L., & Raikhel, N. V. (2001). Disruption of individual members of *Arabidopsis* syntaxin gene families indicates each has essential functions. *Plant Cell*, 13, 659–666.
- Stacey, G., Koh, S., Granger, C., & Becker, J. M. (2002). Peptide transport in plants. *Trends in Plant Science*, 7, 257–263.
- Tang, D., Simonich, M. T., & Innes, R. W. (2007). Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent *Pseudomonas syringae* but confer resistance to *Botrytis cinerea* in *Arabidopsis*. *Plant Physiology*, 144, 1093–1103.
- Thomas, C. M., Jones, D. A., Parniske, M., Harrison, K., Balint-Kurti, P. J., Hatzixanthis, K., et al. (1997). Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell, 9, 2209–2224.
- Thomas, C. M., Tang, S., Hammond-Kosack, K., & Jones, J. D. G. (2000). Comparison of the hypersensitive

- response induced by the Cf-4 and Cf-9 genes in Nicotiana spp. Molecular Plant-Microbe Interactions, 13, 465–469.
- Van den Ackerveken, G. F. J. M., Van Kan, J. A. L., & De Wit, P. J. G. M. (1992). Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen *Cladosporium* fulvum fully supports the gene-for-gene hypothesis. *Plant* Journal, 2, 359–366.
- Van der Hoorn, R. A., Laurent, F., Roth, R., & De Wit, P. J. G. M. (2000). Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4induced necrosis. Molecular Plant-Microbe Interactions, 13, 439–446.
- Wang, C., Cai, X., & Xu, Y. (2006). Molecular mechanism of interaction between tomato and leaf mold pathogen Cladosporium fulvum. Acta Phytopathologica Sinica, 36, 385–391.
- Wang, C., Cai, X., & Zheng, Z. (2005). High humidity represses Cf-4/Avr4- and Cf-9/Avr9-dependent hypersensitive cell death and defense gene expression. Planta, 222, 947–956.
- Yang, H., Li, Y., & Hua, J. (2006). The C2 domain protein BAP1 negatively regulates defense responses in *Arabi-dopsis*. *Plant Journal*, 48, 238–248.
- Yang, H., Yang, S., Li, Y., & Hua, J. (2007). The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiology, 145, 135–146.
- Zhang, Z. G., Feechan, A., Pedersen, C., Newman, M. A., Qiu, J. L., Olesen, K. L., et al. (2007). A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. *Plant Journal*, 49, 302–312.

